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Summary
Soil bulk density is a required variable for quantifying stocks of elements in soils and is therefore instrumental for the evaluation 
of land-use related climate change mitigation measures. Our motivation was to derive a set of pedotransfer functions for soil bulk 
densities usable to accommodate different levels of data availabilities. We derived sets of linear equations for bulk density that are 
appropriate for different forms of land-use. After introducing uncertainty factors for measured parameters, we ran the linear mod-
els repeatedly in a Monte Carlo simulation in order to test the impact of inaccuracy. The reliability of the models was evaluated 
by a cross-validation. The single best predictor of soil bulk density is the content of soil organic carbon, yielding estimates with an 
adjusted R² of approximately 0.5. A slight improvement of the estimate is possible when additionally, soil texture and soil depth are 
known. Residual analysis advocated the derivation of land-use specific models. Using transformed variables and assessing land-use 
specific pedotransfer functions, the determination coefficient (adjusted R²) of the multiple linear models ranged from 0.43 in crop-
land up to 0.65 for grassland soils. Compared to pedotransfer function, from the literature, the performance of the linear modes were 
similar but more accurate. Taking into account the likely inaccuracies when measuring soil organic carbon, the soil bulk density can 
be estimated with an accuracy of +/- 9 to 25% depending on land-use. We recommend measuring soil bulk density by standardized 
sampling of undisturbed soil cores, followed by post-processing of the samples in the lab by internationally harmonized protocols. 
Our pedotransfer functions are accurately and transparently presented, and derived from well-documented and high-quality soil data 
sets. We therefore consider them particularly useful in Austria, where the measured values for soil bulk densities are not available.
Keywords: Land-use, regional calibration, multiple regression, Monte Carlo, cross validation

Zusammenfassung
Die Bodenlagerungsdichte ist eine notwendige Variable bei der Berechnung von dem im Boden gespeicherten Bodenkohlenstoff 
und ist deshalb auch ein wichtiges Instrument bei der Evaluierung von landnutzungsbasierten Minderungsmaßnahmen gegen 
den Klimawandel. Unsere Motivation war, ein Set von Pedotransferfunktionen für die Bodenlagerungsdichte zu entwickeln, die 
für unterschiedlichen Datensätze nutzbar sein könnten. Wir entwickelten ein Set linearer Funktionen für landnutzungsabhängige 
Bodenlagerungsdichten basierend auf Daten aus Österreich, der Schweiz und Südtirol in Italien. Nach dem Einfügen von Unsi-
cherheitsfaktoren für gemessene Bodenparameter wurde die Ungenauigkeit der Gleichungen mittels einer Monte Carlo Simulation 
ermittelt. Die Glaubwürdigkeit der Modelle wurde anhand von Kreuzvalidierung bestimmt. Der Gehalt von organischem Boden-
kohlenstoff ist mit R2 = 0.5 die Bestimmungsvariable, die am besten die Bodenlagerungsdichte voraussagt. Wenn Bodentextur 
und Aufnahmetiefe bekannt sind, ist eine geringe Verbesserung des Bestimmtheitsmaßes möglich. Die Residuen-Analyse empfiehlt 
landnutzungsspezifische Modelle. Mit transformierten Variablen reicht das Bestimmtheitsmaß (R2) der landnutzungsspezifischen 
Pedotransferfunktionen von 0.43 in Ackerböden bis zum 0.65 für Grünlandböden. Die Ergebnisse sind ähnlich aber mehr präzise 
im Vergleich mit Modellen aus der Literatur. Unter Berücksichtigung der Unsicherheit von gemessenen Bodenkohlestoffwerten, 
kann die Bodenlagerungsdichte abhängig von der Landnutzung mit einer Genauigkeit von +/- 9% bis 25% geschätzt werden. Wir 
schlagen vor, dass die Bodenlagerungsdichte an standardisierter volumsgerechter Proben, die mittels Stechzylindern geworben wur-
den und im Labor nach internationalem Standard gemessen wird. Wenn gemessene Werte für Bodenlagerungsdicht nicht vorhanden 
sind, bieten diese Pedotransferfunktionen eine Alternative besonders, weil sie einerseits den Geltungsbereich und anderseits die 
Schwankungsbreiten und Unsicherheiten transparent angeben. 
Schlagwörter: Landnutzung; regionale Kalibrierung, Multiple Regression; Monte Carlo; Kreuzvalidierung
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1. Introduction

When assessing the carbon pool in terrestrial ecosystems, 
soils play a dominant role. The seminal papers of Dixon 
et al. (1994), Batjes (1996) and Pan et al. (2011) provide 
widely cited estimates of the soil carbon pool in different 
types of ecosystems. The soil carbon pool is estimated from 
the content of organic carbon (mg OC g–1) and the soil 
mass. The content of soil carbon is measured with high 
accuracy in the lab and the volume of the fine soil is cal-
culated by reducing the total soil volume (1 m × 1 m × 
depth of a soil horizon) by the volume of coarse material 
(Cools and De Vos, 2016). The carbon-by-mass is finally 
converted to carbon-by-volume (stock) by multiplication 
with soil bulk density (g cm–3). An efficient and commonly 
used method of soil sampling is to open a soil pit and col-
lect material from the individual horizons. Methods for the 
precise measurement of coarse material and soil bulk den-
sity are available (Walter et al., 2016). However, despite 
the importance of soil bulk densities for the calculation of 
nutrient or carbon stocks, this parameter is often let out of 
soil surveys, mostly because it is laborious and time-con-
suming (Kätterer et al., 2006; Sequeira et al., 2014).
In the database BORIS (https://www.umweltbundesamt.
at/boris), we have a huge collection of regional and local 
soil data from previous soil surveys. BORIS is the most 
comprehensive and quality controlled collection of physi-
cal and chemical soil properties including site and land-use 
information in Austria. Even so, few measured soil bulk 
densities have been recorded. In order to estimate changes 
in soil organic pools over time, we need to use this lim-
ited historical data there is, and estimate soil bulk density 
where such measured values are missing.
Pedotransfer functions for the estimation of soil bulk density 
have been developed for several land-use categories and geo-
graphical zones. Several pedotransfer functions use the con-
tent of organic carbon as a single predictor (Adams, 1973; 
Leifeld et al., 2005; Manrique and Jones, 1991; Rawls, 
1983; Saini, 1966; Schrumpf et al., 2011). More complex 
models also include soil type, soil depth, soil texture, and 
land-use (Callesen et al., 2003; Chen et al., 2018; De Vos et 
al., 2005; Hollis et al., 2012; Keller and Håkansson, 2010; 
Manrique and Jones, 1991; Nussbaum et al., 2016; Ruehl-
mann and Körschens, 2009; Wiesmeier et al., 2012). 
The published equations illustrate two general patterns, 
both correlating with the content of soil organic carbon 
and management, regularly managed cropland soils have a 

higher bulk density than forest and grassland soils because 
of more frequent management measures with heavy 
machinery (Schrumpf et al., 2011), and topsoils have a 
lower bulk density than deeper soil horizons, because the 
load of heavy machinery compact subsoils more inten-
sively. Whereby there is an exception for intensive grassed 
pastures where trampling has a higher impact on the upper 
layers (Bohner et al., 2017). However, the published equa-
tions for the estimation of soil bulk density are not gener-
ally applicable and can be recommended only for regions 
that are represented by the dataset (De Vos et al., 2005). In 
particular, pastures and meadows in mountainous regions 
may have soil characteristics that are different from grass-
lands in lowlands due to the influence of climate on soil 
development and plant growth, and also because of less 
intensive land management.
Nanko et al. (2014) categorize the approach of established 
pedotransfer functions as either physical or empirical. One of 
the most cited empirical models is one based on a huge data-
base all across the United States including Hawaii and Puerto 
Rico from Manrique and Jones (1991) and has been imple-
mented for various regions (De Vos et al., 2005; Hollis et al., 
2012). Weiss et al. (2000) applied in the first Austrian inven-
tory of forests a well validated model of Rawls et al. (1983) 
adopted by Moore (1998). This is a physical model, which 
predicts the soil bulk density by the content of soil organic 
matter (SOM) and the weight of mineral fraction (Nanko 
et al., 2014). But more often, default values depending on 
soil texture have been applied for the estimation of missing 
soil bulk densities (Haslmayr et al., 2018). Unfortunately, 
the goodness and the uncertainties of these approaches, as 
applied in Austria, have not been validated or published.
Our motivation was the compilation and evaluation of a 
dataset that allows the estimation of soil bulk density in 
Austrian mountainous soils. Whereas data on forest and 
cropland soils are abundant, we encountered a scarcity 
of data for mountain grasslands, and therefore, acquired 
additional data from Switzerland and Southern Tyrol in 
Italy. We tested two often used pedotransfer functions with 
different approaches on our dataset and derived in step-by-
step analysis a set of regional pedotransfer functions for the 
estimation of soil bulk density of mountainous soils. The 
data analysis assumed different levels of data availability 
and included a span of uncertainties of measured param-
eter. The intention was to provide functions of different 
complexity including a range of uncertainty suiting the 
needs of the respective users. 
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2. Methods

2.1. Soil data
Data for cropland and forest soils were available from the 
BORIS database. Soil data for grassland soils in the BORIS 
data insufficiently represented mountain grassland. In order 
to better represent mountain grassland soils, we acquired 
additional data from Switzerland and Southern Tyrol in 
Italy. We included data where soil depth was recorded and 
which contained measured value for soil bulk density, of the 
concentration of soil organic carbon, and soil texture (sand, 
silt, clay). If necessary, we used the factor 1.724 to convert 
the content of measured soil organic matter to soil organic 
carbon. Content of soil organic carbon and soil bulk den-
sities are not significantly different between the datasets. 
As shown in Table 1, the studied dataset held information 
from 1,732 samples, of which, 567 are from cropland, 348 
from forest and 817 from grassland soils. All the data were 
sampled from sites above 400 m asl and cover soil types 
and parent material as heterogeneous as the Alpine land-
scape itself. The dominant soils are Cambisols, Fluvisols 
and Chernozems and to a lesser extent Leptosols, Gleysols, 
Regosols, Podzols and Stagnosols according to the WRB 
systematic (http://www.fao.org/3/i3794en/I3794en.pdf).

2.2. Analysis and calculations 
2.2.1. �Dataset and pedotransfer functions from literature
The statistically significant differences between land-use 
categories in the compiled dataset were calculated with an 
ANOVA and a post Student-Newman-Keuls test for all the 

soil parameters. Outliers were not removed because they 
had no statistical influence on the calculated models.
We tested for the different datasets (“all data”; “cropland”; 
“forest”; “grassland”) the empirical pedotransfer function of 
Manrique and Jones, (1991) developed on a huge dataset 
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as well as a technical equation already used in Austria by 
Weiss et al. (2000) based on Rawl et al. (1983) and adopted 
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whereby SOM was derived from % soil organic carbon 
by a factor of 1.724.

2.2.2. Building models
General linear models were calculated to derive func-
tions for soil bulk density with different sets of independ-
ent variables for the whole dataset and for the datasets of 
each land-use category. Independent variables were the 
content of organic carbon, location of the soil sample in 
the soil profile (“that is to say, its depth”) and soil texture 
(sand, silt, clay). We derived functions of different com-
plexity and used transformed data if necessary. In the sim-
plest model, the only independent variable was soil organic 
carbon. More complex models included soil texture and 
soil depth. For the multiple regression, a stepwise variable 
selection algorithm was used, employing the AIC to deter-
mine which parameter significantly improved the model. 

Country Made available by number of samples Land-use
elevation (m asl)

mean min max

AT our own dataset 15 Grassland 909 672 - 1554

AT Upper Austria (BORIS) 567 cropland 540 400 - 1140

AT Upper Austria (BORIS) 656 Grassland 1047 410 - 2460

AT BAW (internal dataset) 348 Forest 1024 400 - 2050

AT A. Bohner (other studies) 18 Grassland 663 420 - 1830

CH J. Leifeld 116 Grassland 760 430 - 1220

IT EURAC 12 Grassland 1607 986 - 2043

BORIS = official soil data base (https://www.umweltbundesamt.at/boris); BAW = Bundesanstalt für Wasserwirtschaft, Petzenkirchen; EURAC = Institute of 
Alpine Environment, Bolzano

Table 1. List of datasets from Austria (AT), Switzerland (CH) and Italy (IT) naming sources, number of samples, land-use and mean, lowest (min) 
and highest (max) elevation of the sites sampled
Tabelle 1. listet die Datensammlungen aus Österreich (AT), Schweiz (CH) und Italien (IT) mit Quellen, Anzahl Bodenprobe, Landnutzung und 
mittlere (mean), minimale (min) und maximimale (max) Höhenlage der Probenstellen.
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In order to justify the derivation of individual general lin-
ear models for each type of land-use, we performed an 
ANOVA of the model residuals complemented by the post 
hoc Duncan- and Scheffe-tests.
 
2.2.3 Evaluation and validation
The quality of the obtained linear models as well as the 
use of the two pedotransfer functions from the literature 
was judged by the adjusted R² and the accuracy of the pre-
dicted soil bulk densities by the root mean squared errors 
(RMSE). Additionally, we tested in a Monte Carlo simula-
tion the impacts of uncertainties from the measured param-
eters on the prediction of the estimated soil bulk density.
Based on expert judgement, we defined that depth is hav-
ing an error term of zero and the measured value of the 
soil organic carbon and texture all have an error term of 
10% respectively (Gottschalk et al., 2007). Accordingly, 
the measured parameters “soil organic carbon”, “sand”, 
“silt” and “clay” were modified in a Monte Carlo analysis 
by including a normally distributed error. This was done 
by multiplying the original value with a random value 
from an N (1, 0.1) distribution. This means that the mean 
is 1 (which means no change) and the standard deviation 
is 10% of the original value. Each parameter was modi-
fied in this way and the estimation of soil bulk density was 
run n = 5,000 times. The mean percentage of uncertainty 
(PU) of the estimated soil bulk density was quantified as 
the mean of the 5,000 resulting standard deviations of the 
relative residuals:
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with SD being the standard deviation and diffi being the 
vector of the k relative differences between the modelled 
and measured values in the ith iteration of the Monte 
Carlo simulation:
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 with BDmo and BDme being the modelled and the meas-
ured bulk density, respectively. 
Best fit equations have a higher R2, and lower RMSE and 
PU. Medians of diff were used for each separate data set 
(“all data”; “cropland”; “forest”; “grassland”) to determine 
any over- or underestimation of the predicted soil bulk 
densities.

In order to test the models for overfitting, a cross-valida-
tion was carried out. Hereby all datasets from all sites (“all 
data”, “cropland”, “forest” and “grassland”) were randomly 
split into four disjoint parts. Each of these parts was alter-
nately once used as validation dataset with measured soil 
bulk densities, while the other three were used as training 
data set estimating bulk densities by the best fit models. 
The cross-validation was repeated 1,000 times for all the 
land-use categories, and finally, the R2 of cross-validation 
was compared between the different loops and to the R2 
of the model. All the computing was done with R-Studio 
(version R-3.4.4).

3. Results 

3.1. Dataset

In Table 2, the descriptive statistics of the whole data 
sets and divided into the different land-use categories are 
shown. Except for clay content, the means of all the soil 
parameters differed significantly between the three land-
use categories (p < 0.05). Soil organic content in the data-
set ranged from 1–295 mg g–1 in the order grassland > for-
est > cropland. Figure 1 A shows a wide scatter of measured 
soil bulk densities for different forms of land-use. Crop-
land soils are clustered at higher densities, forest soils have 
generally lower values, and grassland soils are widely vari-
able, presumably depending on type (pasture or meadow) 
and intensity of grassland management. 

3.2. Linear models

The single best predictor of soil bulk density of the whole 
dataset (n = 1732) is the content of soil organic carbon 
with an adjusted R² of 0.50 (p < 0.001). Including hori-
zon depth and soil texture as additional independent vari-
ables increases R² only marginally to 0.52 (p < 0.001). The 
relation between soil organic carbon and bulk density, as 
shown in Figure 1 A), is curvilinear. In order to justify the 
use of linear models for the prediction of bulk density, we 
transformed soil carbon to the square root of soil carbon 
(SOC0.5; Figure 1 B). The adjusted R2 of SOC0.5 to bulk 
density increased to 0.55 (p < 0.001).
Figure 2 A) presents the standardized residuals versus fit-
ted values for all data. The three land-use categories are 
clustered. Values for cropland (stars) are in the upper right 
part of the graph, forest (triangle) in the right lower part of 
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the graph, whereas grassland (squares) are widely distrib-
uted. Figure 2 B), C) and D) show the performance of the 
individual land-use categories. The AONVA analysis of the 
results for the individual land-use categories shows biased 
predictions for the single categories. Cropland and grass-
land biases are slightly positive at 0.08 and 0.03 respec-
tively, and the bias of forest soils is -0.20. The Duncan and 
Scheffe tests both confirmed the differences between the 

three land-use categories (data not shown), and thereby, the 
appropriateness of own models for each land-use category. 

3.3. Best fit models

The coefficients of the linear models for the estimation 
of soil bulk density are listed in Table 3. The best fit is 
achieved for grassland soils (R2 = 0.65; RMSE 0.190), the 

parameter
all data (n = 1732) cropland (n = 567) forest (n = 348) grassland (n = 817)

mean min   max mean min   max mean min   Max mean min   max

Depth [cm] 20 1 - 70 26 10 - 50 27 8 - 60 12 1 - 70

SOC [mg g–1] 39 1 - 295 19 4 - 120 32 10 - 185 55 1 - 295

Sand [mg g–1] 280 0 - 910 217 0 - 721 35 21 - 717 289 18 - 910

Silt [mg g–1] 538 2 - 934 587 172 - 934 446 172 - 703 544 20 - 882

Clay [mg g–1] 184 1 - 701 197 35 - 467 207 36 - 701 167 10 - 560

BD [g cm–3] 1.2 0.3 - 2.2 1.4 0.5 - 1.7 1 0.4 - 2.2 1.1 0.3 - 1.7

Table 2. Mean, minimum (min) and maximum (max) values of soil depth, organic carbon (SOC), sand, silt, clay and bulk density according to the 
datasets: all data, cropland, forest and grassland (n = number of samples)
Tabelle 2. Mittlere (mean), minimale (min) und maximale (max) Werte der Bodenprobeentnahme, organischem Bodenkohlenstoff (SOC), Sand-, 
Schuff-, Tongehalten und der Bodenlagerungsdichten (BD) von ‚allen Daten‘, Ackerböden, Wald- und Grünlandböden (n = Anzahl Proben)

Figure 1. Measured soil bulk densities from cropland (star), forest (triangle) and grassland (squares) soils versus A) soil organic content and B) 
squared root of soil organic carbon
Abbildung 1. gemessene Bodenlagerungsdichten von Acker- (Sterne), Wald- (Triangel) und Grünlandböden (Quadrate) versus A) gemessenen 
organischen Bodenkohlenstoff und B) Wurzel des organischen Bodenkohlenstoffs
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weakest fit for cropland soils (R2 = 0.43; RMSE = 0.105). 
The most complex models, that is, with the highest num-
ber of predictors, give the best adjusted R² and RMSE, 
although the difference in R² to the simpler models is 
modest. The uncertainty of the model equations slightly 
increases when only the content of soil carbon as predic-
tion variable is considered but the differences are minor. 
If land-use is not specified (dataset “all data”), the parame-
ters of soil depth and content of silt strengthen the estimates 
of soil bulk densities in EQ 1. The variable “depth” has a sig-
nificant impact in cropland soils (EQ 2), but is not relevant 
for forest and grassland soils. In forest soils, only the content 
of soil carbon has a significant impact in the model (EQ 3) 
whereas the content of silt and clay increases the quality 
of estimates in grassland soils (EQ 4). In situations where 
only the content of soil carbon is known, the strength of the 
equations for all data (EQ 5), cropland (EQ 6) and grass-
land (EQ 7) decreases, although the reduction is marginal. 

3.4. Evaluation and validation

Monte Carlo simulations showed that a 10% inaccuracy of 
the measured variables leads to PU of 21% of the estimated 
soil bulk density for all the data. In the stratified datasets, 
the PU of the estimated soil bulk densities using all the pre-
diction variables was lower for cropland (9%) and grassland 
(17%) and higher for forest (25%) as compared to the whole 
dataset. With the content of soil organic carbon as the only 
prediction variable, the PU increases only slightly. The cross-
validation showed only a minor variation of R2 between the 

separate loops and thereby no overfitting was found. Over-
all, the mean R2 of the cross validation was slightly lower 
compared to R2 of the model equations (Table 3). 
In Figure 3, the histograms show that the estimated soil 
bulk densities for A) the whole dataset and B) cropland 
are slightly underestimated with median predictor error of 
-0.020, and -0.005 respectively, whereas for C) forest and 
D) grassland, the calculated soil bulk densities are overes-
timated with median predictor error of 0.014 and 0.028.
The equations are not reliable for extrapolation. To avoid 
very low, or even negative estimated soil bulk density values, 
for instance, by using data with prediction variables out-
side the range of the calibration data sets, we introduced a 
minimum value with the “max” term in the equations above 
the minimum value of the predicted soil bulk densities was 
set to the lowest value occurring in the respective dataset 
described in Table 2. Figure 4 A–D) illustrate the perfor-
mance of measured versus modelled soil bulk densities in the 
validation data set using the best fit equations from Table 3: 
A) �BDall data    =  max(0.3,1.650 – 0.0022 ∙ cm soil layer 

depth – 0.3157 ∙ SOC0.5  +0.0028 ∙ %silt)
B) �BDcropland  =  max(0.5,1.873 – 0.0021 ∙ cm soil layer 

depth – 0.304 ∙ SOC0.5)               
C) BDforest = max(0.4,1.523 – 0.3199 ∙ SOC0.5)
D) �BDgrassland =  max(0.3,1.698-2.2737 ∙ SOC0.5+0.0009  ∙ 

%silt + 0.002 ∙ %clay)    

The R2 of the prediction ranges from R2 = 0.43 in crop-
land to R2 = 0.64 in grassland soils, the RMSE are between 
0.105 in cropland and 0.205 in forest. In Figure 4, we 

EQ landuse Intercept Depth SOC-0.5 Silt Clay R² RMSE PU CV

[cm] [mg g–1]0.5 [%] [%] [%] mR2

1 all data 1.650 -0.0022*** -0.3157*** 0.0028* 0.58 0.190 21 0.57

2 cropland 1.873 -0.0021*** -0.3042*** 0.43 0,105 9 0.41

3 forest 1.523 -0.3199*** 0.58 0.205 25 0.56

4 grassland 1.698 -0.2737*** 0.0009** -0.0020** 0.65 0.171 17 0.65

5 all data 1.682 -0.2738*** 0.55 0.197 24

6 cropland 1.720 -0.2306*** 0.41 0.107 9

7 grassland 1.693 -0.2635*** 0.65 0.157 18

*; ** and *** means a significance where p < 0.05; 0.01 and 0.001 respectively

Table 3. Coefficients of the linear model equations (EQ) and the evaluation of the models by R squared (R2), root mean squared error (RMSE) and 
percentage of uncertainty (PU) together with the validation by the mean squared R (mR2) of the cross validation (CV)
Tabelle 3. Die Koeffizienten der linearen Gleichungen (EQ) und die Evaluierung der Modelle anhand des Bestimmtheitsmaß (R2), Wurzel der 
Mittlere quadratische Abweichung (RMSE) und dem Prozent der Unsicherheit (PU) gemeinsam mit dem Ergebnis der Validierung durch mittleres 
Bestimmtheitsmaß (mR2) aus der Kreuzvalidierung (CV)
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see in B) C) D), that low measured soil bulk density val-
ues in all the land-use categories are rather overestimated, 
whereas high values are rather underestimated by the equa-
tion EQ 2, EQ 3 and EQ 4 respectively. 
R2 of the Manrique and Jones model and the model used by 
Weiss et al. (2000) are similar to the results of the regional 
pedotransfer functions (EQ 1–EQ4) derived in this study, 

though the accuracy is less good as RMSE for all the data-
sets are higher and ranges from 0.190–0.248. Results from 
“all data”, “cropland” and “grassland” show that the Man-
rique and Jones model strongly underestimates the pre-
dicted soil bulk density, whereas the predicted values for 
“forest” are to a high degree overestimated. By the model 
used by Weiss et al. (2000; Figure 4; I–L), the results show 

Figure 2. Residuals versus predicted soil bulk densities (BD) with regression line (dashed) and lowest smoothing line (solid) of A) all data, B) 
cropland, C) forest and D) grassland sites.
Abbildung 2. Die Residuen versus modellierten Bodenlagerungsdichten (BD) mit der lineare Regressionsline (gestrichelt) und LOWESS-Spline-Linie 
(durchgezogen) von A) ‚alle Daten‘, B) Ackerböden, C) Wald- und D) Grünlandböden.
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a similar trend, though the model is not able to predict 
higher soil bulk densities in either of the datasets. 

4. Discussion

Estimations of the stock size of elements in soil horizons 
require the concentration of the respective element, the 
mass of fine earth, the depth of the respective horizon, and 
the soil bulk density. High quality data of the measured 

element concentrations are available from specialized labs. 
A considerable source of error is introduced by uncertain 
estimates of the rock content, as discussed in Poeplau et al. 
(2017). Here, we focus on soil bulk density. 
The optimal solution is measuring soil bulk density from all 
the sampled soil horizons by the collection of undisturbed 
soil cores that are later processed in the laboratory. Due to 
operational constraints, this measurement is often omitted 
and consequently alternatives are sought. In Austria, like in 
the recent calculations for the Austrian Soil Carbon Map 

Figure 3. Histograms showing the bias (relative error) of predicted soil bulk density (BD) of A) all data, B) cropland C) forest and D) grassland respectively
Abbildung 3. Histogramm mit der Verzerrung (relative Fehler) der geschätzten Bodenlagerungsdichten (BD) bei A) ‚alle Daten‘, B) Ackerböden, C) 
Wald- und D) Grünlandböden
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(ASOC; Haslmayr et al., 2018), it is common to use default 
values for missing values of soil bulk densities. These default 
values are based on soil texture and are derived from dif-
ferent German surveys. They are elaborately described, for 
example, by Ad-hoc-Arbeitsgruppe Boden (2005). For the 
first carbon budget of Austrian forests, Weiss et al. (2000) 
applied an international published equation based on Rawls 
et al. (1983). For agricultural soils, a set of estimates for 
soil bulk density correlated with the soil organic content 
was used by Gerzabek et al. (2005). The nature of these 

calculations follows the approach of Körschens and Wald-
schmidt (1995) but are not further described. 
As we see in Figure 4, there are minor differences in model 
performance between the different models, whereby the 
equations from this study, as well as the model from Man-
rique and Jones, are more flexible predicting soil bulk den-
sities from a wider range of measured values. In addition, 
they are more precise (better RMSE) than the physical 
approach based on the model used by Weiss et al. (2000) as 
this model has limited prediction potential for higher soil 

Figure 4. Performance of measured versus predicted soil bulk density (BD) including regression line (dashed) for “all data”, “cropland”, “forest” and 
“grassland” datasets applying A – D the best of regional equations from this study, E – H the model of Manrique and Jones (1991) and I – L the 
model used by Weiss et al (2000). R2 and RMSE describe the goodness of the functions 
Abbildung 4. Modellierte versus gemessene Bodenlagerungsdichten mit Regressionsline (gestrichelt) für alle Datensets (‚all data‘, ‚cropland‘, ‚forest‘ 
und ‚grassland‘) in A – D anhand der regional kalibrierten Gleichungen dieser Studie, E – H berechnet mit dem Modell von Manruiqe und Jones 
(1991) und I – L das Modell verwendet von Weiss et al. (2000). R2 und RMSE geben die Güte der Gleichungen wieder.
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bulk densities. All the models overestimate the low meas-
ured soil bulk densities and underestimate the high meas-
ured values. Sequeira et al. (2014) explain this as a typical 
trend for datasets including a wide set of measured soil bulk 
densities, since the empirical as well as the physical model 
intend to minimize the systematic errors focusing on the 
mean of the prediction variable (here foremost SOC) in the 
datasets. This also explains the lower RMSE and PU from 
the cropland equations, as these samples have less variabil-
ity in the measured soil bulk densities as well as in the pre-
dicting variables of soil organic carbon and soil depth. 
We suggest to use regional datasets and multiple linear 
regression in order to derive and calibrate the pedotransfer 
equation. The dataset used in this study represents a wide 
range of management systems and site conditions in the 
eastern Alps above 400 m a.s.l. Using a regional dataset 
enabled us to reduce bias and strengthen the predictabil-
ity of the pedotransfer function (De Vos et al., 2005). We 
see the performance of the predicted soil bulk densities in 
A–D (Figure 4) following this approach fit closer to the 1:1 
relationship line. The presented pedotransfer equations are 
valid for sites with soil parameters within the range calibra-
tion dataset (Table 2) and open for the inclusion of incom-
plete databases for local, regional and national soil nutrient 
or organic carbon stock calculations. 
The equations we present in Table 3 are given for soils in 
general and for different forms of land-use. Bias is low in all 
the datasets. The best support for the pedotransfer equation 
is given for grassland soils. In the Alps, there is a wide range 
of intensities in grassland management, ranging from exten-
sively-used pastures and meadows with one or two cuts a year 
to intensively used cattle pastures and meadows with four or 
five cuts per year and fertilizer applications. In the compiled 
data set, all the grasslands categories were represented. 
The pedotransfer functions for cropland gave the weakest 
prediction of soil bulk densities as only 43% of the esti-
mated soil bulk density can be explained by the variable 
soil depth and content of soil organic carbon. The results 
are comparable to the findings of (Chen et al., 2018; Kät-
terer et al., 2006; Suuster et al., 2011). We suppose the 
impact of management on one hand explain the lower var-
iability of the measured parameters in the cropped top soil, 
and on the other hand, the compaction by heavy machin-
ery in the sub soils below the plough-pan layer.
Surprisingly, soil texture only has a significant impact on 
the soil bulk densities derived from grassland soils. Just as 
interesting were the negligible differences of model good-
ness (R2, RMSE) and PU between more complex models 

and models with only soil organic content as predicting 
variable (for instance see Table 3: EQ 4 and EQ 7).
Using any of these equations to estimate the stock of soil 
organic carbon, a delicate situation occurs. The content of 
organic carbon is used to estimate soil bulk density, and 
soil bulk density is used to estimate the soil carbon pool. 
This is the classic example of a circular argument where 
the premise includes the conclusion. However, it is elusive 
to estimate soil bulk density without knowing the organic 
carbon content. The only remedy is to insist that soil car-
bon pools can only be estimated using data based on the 
measured soil bulk densities. 
The assessment of uncertainty and variance is indispensa-
ble for the measured as well as for the estimated soil bulk 
densities (Schrumpf et al., 2011). The Monte Carlo simu-
lation shows that, due to the structure of the derived linear 
model, soil bulk density estimates carry an uncertainty of 
9 to 25% according to land-use. It is the task of the user 
of the equations to evaluate this uncertainty. An argument 
against the equations may be that an uncertainty of up to 
25% is not acceptable. An argument in favor of these equa-
tions is that the uncertainty is known at all, and that upper 
and lower limits and the mean value of the target value 
(e.g., soil carbon stock of an area) based on soil bulk den-
sity can be established. This knowledge sets the equations 
apart from published formulas and expert judgment. 

5. Conclusion

By this step-by-step description of deriving pedotrans-
fer functions, we encourage the use of these derived 
pedotransfer functions as well as the development of fur-
ther regional models for other missing variables. Regarding 
the rather poor predictability, we recommend measuring 
soil bulk density by standardized sampling of undisturbed 
soil cores and the post-processing of the samples under lab-
oratory conditions by internationally harmonized proto-
cols. When the measured values for soil bulk density are 
not available, our set of linear equations, based on a broad 
range of predicted variables of different land-use offers a 
regionally calibrated and validated alternative.
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